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Abstract – Fibre Channel is a highly 
reliable, gigabit, serial interconnect 
technology. Commercial applications of 
the Fibre Channel technology allow 
concurrent communications among 
storage devices using upper level 
protocols such as Small Computer 
System Interface (SCSI) and Internet 
Protocol (IP). Fibre Channel technology 
is scalable and flexible due to its support 
of various topologies, such as dedicated 
point-to-point, arbitrated loops, and 
scaled switched networks [1].  
 
Advanced avionics programs and 
applications have an increasing need for 
bandwidth while maintaining low latency, 
determinism, and reliability. Therefore 
Fibre Channel is being selected as an 
avionics communication solution for a 
variety of new military aircraft and 
upgrades to existing aircraft [2]. Testing 
at all stages (factories and depots) is 
necessary to guarantee the reliable and 
deterministic communication of avionics. 
 
Fibre Channel avionics networks present 
new challenges to those responsible for 
maintenance testing at the depots: 

• The requirement of testing an 
avionics application 
communicating via an upper level 
protocol, while the test 
environment presents a low level, 
physical interface.  

• Emulating the system 
environment of a line replaceable 
unit (LRU) to obtain complete 
functional test coverage.  

• Storing and monitoring large 
amounts of data passing through 
the Fibre Channel network. 

Existing test instruments and emulators 
in the market operate at the Fibre 
Channel protocol level and they lack 
necessary support for LRUs. Testing at 
the Fibre Channel protocol level detects 
bad receivers, transmitters, media, and 
Fibre Channel processors, but fails to 
find problems in the inner workings of an 
LRU. 
 
In this paper, we will address the testing 
challenges listed above with an LRU-
centric approach. We will specify an 
LRU-centric Fibre Channel testing 
framework and provide implementation 
guidelines using example applications. 
 

INTRODUCTION 

Fibre Channel Technology 

Fibre Channel is an accepted international 
standard that is administered by the T11 
Technical Committee [9] of the International 
Committee for Information Technology 
Standards (INCITS). Fibre Channel 
technology is widely used by the commercial 
industry for Storage Area Network (SAN) 
applications. Fibre Channel is also used as 
a high speed data bus for avionics systems. 
Currently, Fibre Channel operates at data 
rates of 1.0625 Gbps, 2.125 Gbps, and 4.25 
Gbps. Future data rates are projected to be 
8.5 Gbps and 10 Gbps.  
 



Fibre Channel has an architecture that 
contains 6 levels to isolate the complexities 
associated with each level (See Figure 1 for 
a comparison of Fibre Channel levels and 
Open Systems Interconnection (OSI) layers) 
[10]. 
 

 
 

Figure 1 Fibre Channel Architectural 
Levels compared to OSI Layers 
 
The FC-0 layer [5,6,7] defines the physical 
interface characteristics of Fibre Channel 
standard, such as data rates, optical and 
electrical variants used at each data rate, 
connectors, maximum distance capabilities, 
and other characteristics such as the 
wavelengths for optical and the signal levels 
for the electrical media. 
 
The FC-1 layer defines the transmission 
protocol for Fibre Channel communication. 
The transmission protocol includes the serial 
encoding (8b/10b encoding is used), 
decoding, error control, and link control. The 
clock information is embedded in the serial 
data stream. 
 
The FC-2 layer defines the signaling and 
framing protocol of Fibre Channel. The 
protocol involves the framing structure, the 
flow of control, and upper level protocol-
independent class of services.  
 
The FC-3 layer is reserved, but not fully 
specified, to provide common, protocol-

independent services to support multiple 
protocols over multiple ports. 
 
The FC-4 layer defines the mapping of the 
application to the network control structures. 
An application for Fibre Channel may be an 
upper-level protocol (ULP), such as Small 
Computer System Interface (SCSI), 
Anonymous Subscriber Messaging (ASM), 
Internet Protocol (IP), MIL-STD-1553, IPI, or 
High Performance Parallel Interface (HIPPI). 
 
A Fibre Channel network consists of two or 
more devices connected by an 
interconnection scheme called a topology 
[8]. Sources and destinations of information 
in Fibre Channel network are called nodes. 
Each node has one or more node ports 
(N_Port, NL_Port, or generically just 
Nx_Port). A node port is a hardware function 
that allows the node to transmit and receive 
information using the Fibre Channel 
interface. Figure 2 illustrates a node, its 
ports, and communication links. 

 
Figure 2 Terminology used in Fibre 
Channel Nodes 
 
The Fibre Channel standard supports three 
topologies:  
• Point-to-point topology: There are 
exactly two N_Ports connected together. No 
switch (routing function) is present. 
• Arbitrated loop topology: There are 
a practical minimum of two and a maximum 
of 126 NL_Ports connected in a loop. Switch 
(routing function) is distributed into each 
NL_Port. 
• Switched fabric topology: Up to 14 
million ports can be connected together. 
Switch (routing function) is centralized via a 
generic environment. 
 
The smallest information unit for Fibre 
Channel communication between two nodes 



is called a frame. A frame is made up of 
transmission words, which contain 4 bytes 
each. A frame contains a start-of-frame 
delimiter (4 bytes), a header of 6 
transmission words, an optional payload up 
to 528 transmission words, a 4-byte long 
Cyclic Redundancy Check (CRC), and an 
end-of-frame delimiter (See Figure 3). 
Frame header contains information for 
identification (destination and source 
address), placement within a related 
collection of frames, flow of control, and 
basic service parameters. The payload is 
optional. The payload, when exists, can 
contain raw data, as well as, frames for an 
upper-level protocol. 
 

 
 

Figure 3 Frame Structure 
 
One or more frames make a sequence. A 
sequence is a unidirectional transfer of a set 
of frames that move between the same 
source and destination nodes. One or more 
sequences make an exchange. An 
exchange is bidirectional (See Figure 4). A 
port can execute multiple exchanges 
simultaneously. 
 
Certain processes are used to manage an 
exchange between nodes. Exchange 
management involves login procedures (i.e. 
Fabric Login, Point-to-Point N_Port Login) to 
establish communication session between 
two nodes, maintain and control the 
communication until the intended one or 

more exchanges are complete, and finally 
end the session with a logout procedure.  
 

 
 
Figure 4 Exchange, sequences, and 
frames 
 
The Fibre Channel standard defines multiple 
delivery options referred to as Classes of 
Service to support the needs of a wide 
variety of applications and data types. Fibre 
Channel implements Quality of Service 
(QoS) features, such as guaranteed 
bandwidth, guaranteed latency, 
acknowledged delivery, notification of non-
delivery, end-to-end flow control, and 
guaranteed in-order delivery of frames within 
a sequence, using different classes of 
service. Generally, there are five user 
classes of services defined in Fibre 
Channel. However, only two of them, Class2 
and Class-3, are widely deployed in the 
industry. Class-3 is the dominant class of 
service in the commercial and mil-aero 
markets. It is a best-effort, packet-switched 
class of service that resembles a datagram 
service with no significant QoS features [2]. 
 

Fibre Channel Usage and Test 
Requirements in Military/Avionics 
Applications 

Advanced avionics technologies generate 
data in the form of voice and video data at 
higher rates than the current communication 
bus architectures (i.e. MIL-STD-1553). As 
an answer to this limitation, Fibre Channel 



has replaced the aging MIL-STD-1553 
standard as the main control and data bus 
for military avionics. However, Fibre 
Channel is not the only high speed 
communication bus technology used by the 
avionics. A typical avionics Line 
Replaceable Unit (LRU) uses more than one 
data and/or control bus interfaces 
simultaneously (See Figure 5). While a Fibre 
Channel is used as the primary data and 
control bus, secondary data buses (i.e. 
source synchronous and/or slow parallel – 
Peripheral Component Interconnect (PCI), 
Virtual Machine Environment (VME)) are 
used as wide data pipes for short distances. 
For example, an LRU may receive a 
command from the Fibre Channel port and 
start transmitting data through its source-
synchronous data port as a response. 
 

 
 
Figure 5 An LRU with multiple ports 
supporting different interfaces 
 
Within the T11 Fibre Channel Standards 
group, a technical committee is responsible 
with the definition of upper-level protocols 
for military/avionics applications. To this 
date, three upper-level protocols are 
published; a mapping of MIL-STD-1553 over 
Fibre channel, ASM, and Remote Direct 
Memory Access (RDMA), which is a SCSI 
light protocol. 
 
One advantage of using MIL-STD-1553 over 
Fibre Channel is that a user, who is familiar 
with the legacy MIL-STD-1553 standard, can 
operate using MIL-STD-1553 commands 
without being concerned with the transport 
layer. Figure 6 illustrates, the mapping of a 

typical MIL-STD-1553 operation to Fibre 
Channel, sending 1553 Bus Controller (BC) 
to - Remote Terminal (RT) Transfer 
Command. 
 

 
 
Figure 6 1553 BC-to-RT operation over 
Fibre Channel 
 
ASM protocol used in military is illustrated in 
Figure 7. ASM is a basic Producer-
Consumer paradigm. The avionics 
applications are designed to generate and 
consume data at periodic rates. Therefore, 
once the Producers and Consumers are 
synchronized in the same time domain, they 
do not need an external controller to 
maintain the communication. 
 

 
 
Figure 7 Example ASM exchange 
 
Recent studies [2, 3, 4] listed the following 
minimum intermediate-level (the LRU is 



tested until a fault is identified to the LRU 
subsystem System Replaceable Unit) 
capabilities for a Fibre Channel test system: 
1. Adherence to FC-0, FC-1, and FC-2 

standards for lower-level protocols and 
FC-4 standard for upper-level protocols.  

2. Capability of optical transmitter and 
receiver to operate within specified 
ranges.  

3. Capability to accommodate multiple 
channels of connectivity for copper and 
fiber links concurrently.  

4. Capability to generate “bad” traffic by 
programmatically injecting errors (i.e. 
Cyclic Redundancy Check – CRC error 
injection).  

5. Capability to differentiate “bad” traffic 
from “good” traffic.  

6. Capability to generate and read traffic 
concurrently.  

7. Capability to generate traffic in response 
to a trigger condition.  

8. Capability to generate traffic from a file 
in binary format (streaming).  

9. Capability to send and receive a 
sequence of frames programmatically 
multiple times with a certain period. 

 
One major Fibre Channel testing 
requirement common to all levels of 
maintenance is the support for upper level 
protocols over Fibre Channel. A desired test 
system (instrument and development 
environment) should allow the test engineer 
to program and test at an abstraction level 
that matches the upper level protocol, not 
the underlying low-level Fibre Channel 
protocol.  
 

Current Fibre Channel Solutions 

Currently, many Fibre Channel test solutions 
are targeting Storage Area Networks (SAN). 
They are either Fibre Channel device 
emulators (distance, delay, frame dropping, 
buffer-to-buffer credit estimation, frame 
configuration, and traffic generation) or 
parametric test instruments (i.e. bit error 
test, fabric login testing, signal loss). 
 
A traditional Fibre Channel test environment 
includes active test tools that generate traffic 
conditions needed to test all of the fabric 
and equipment capabilities, together with 
passive protocol analyzers to transparently 

monitor traffic information within the 
network. Significant challenges are related 
to the integration of heterogeneous test tools 
and various application programming 
interfaces (API) in a common test 
environment. 
 
However, these are not true automated test 
equipment (ATE) solutions. Traffic 
generation and monitoring is supported, but 
the testing is left as an exercise for the user. 
They do not have built-in support for upper-
level protocols, i.e. nothing over FC-2 level. 
Creation of sequences and management of 
exchanges are handled in the users’ test 
programs. 

LRU-Centric Fibre Channel 
Testing 

In [3], the authors point out two areas of 
interest in testing the Fibre Channel network 
implementation in the Joint Strike Fighter 
(JSF) program: a) the parametric testing of 
the laser transceivers, and b) the analysis of 
the JSF ASM protocol implementation. 
Although these are specifically listed as the 
testing requirements for the JSF program, 
we believe they reflect the common 
concerns about various military/avionics 
Fibre Channel implementations. 
 
Our goal is to address the test requirements 
listed above with a LRU-centric solution that 
provides: 

• Built-in test functionality for upper-
level protocols as well as the Fibre 
Channel protocol. 

• Test development environment (i.e. 
tools, software drivers) that supports 
FC-4 level and upper-level protocols 
in addition to FC-2 level.  

• Software and hardware features (i.e. 
triggering, protocol encoding and 
decoding, deterministic and 
accurate scheduling of 
transmissions) to emulate the 
system environment of the LRU. 

 
The following sections give a detailed list of 
features, with some examples, that are part 
of our solution. The features covered in 
these sections are: 

• Creation of test data  
• Controlling test data generation  



• Expressing test flow  
• Emulating the system environment 

 
Our solution is a set of design guidelines for 
a test development and execution 
environment and indirectly the test 
instrument that will support this software 
abstraction. It should be noted that the 
features explained below are generic 
enough to support other high speed serial 
bus protocols with minimum changes. 
 

Creation of Test Data 

Static Test Data Sources 

Test (Source) data, in its most generic form, 
is a collection of arbitrary transmission 
words. These transmission words are 
organized into structures called static data 
sources. There are two types of static data 
sources: transmit and expect. 
 
Transmit data sources hold a sequence of 
transmission words that a port is to 
broadcast. The sequence is arbitrary, 
although most test applications use 
structured data in the form of properly 
formatted frames and sequences. The 
generic nature of data sources provides 
support for higher level abstractions like 
frames and sequences, yet still offers 
arbitrary error injection capabilities for those 
test applications that require it. 
 
The transmission word set in a transmit data 
source can be presented in a grid with 3 
columns (See Table 1): 
 

• The first column contains the 0-
based offset of the transmission 
word in the set.   

• The second column contains a 
depiction of the transmission word.  

• The third column contains either a 
count that indicates the total number 
of consecutive instances of that 
transmission word or a description 
of the use of that transmission word 
in a frame.  

 
 
 
 

Offset Word  #/Type 
0  IDLE  4  
4  SOFf  SOF  
5  0x06  0x000011  HDR 0  
6  0x00  0x000022  HDR 1  
7  0x48  0x290000  HDR 2  
8  0x46  0x00  0x0000  HDR 3  
9  0x03B1  0xFFFF  HDR 4  
10  0x00000000  HDR 5  
11  0x00000011  DATA 0  
12  0x22222222  DATA 1  
13  AUTO  CRC  
14  EOFn  EOF  
15  IDLE  6  
*    

 
Table 1 Presentation of Transmit Data 
 
However, this form of creating test data is 
still a lower level of abstraction than desired, 
if the goal is only streaming data from node 
A to node B with no error injection. In this 
case, the specification of test data should be 
as simple as: 
 
TRANSMIT SEQUENCE (  

SourceNode: A,  
DestNode: B,  
SourceData:<file_spec>,  
<class of service>,  
<Other service parameters:   

Max payload size,  
frame control, sequence 
control, …> 

); 
 
The underlying implementation should 
handle breaking up the binary test data file 
into frames and sequences. 
 
Expect data sources hold a specification of 
what sequence of transmission words is 
expected at the port’s receiver. Expect data 
has two components: the data to expect and 
a mask to indicate which bits of that data are 
relevant in determining a pass/fail result. 
Expect data should be presented in a similar 
fashion as transmit data. The principal 
difference lies in the display of the data in 
indicating relevant and masked (non-
relevant) data. If the cell contains all relevant 
data (it’s not masked), then it is rendered as 
it would be for transmit data. Masked data is 
displayed according to the following rules: 

• Data is always in hex.  



• Hex digits that are completely 
masked are displayed as “-”.  

• Hex digital that are partially masked 
are displayed as “?”. 

 
Table 2 shows examples of combining logic 
state and mask data to produce expect data: 
 
 
Logic State 

Data 
Mask 

Displayed 
Expect Data 

0x12345678  0xFFFFC000  0x----?678  

0x12345678  0xFFFFFFFF  0x--------  

0x12345678  0x00000000  0x12345678  

0x12345678  0xF0F0F0F0  0x-2-4-6-8  

 
Table 2 Presentation of Expect Data 
 
There are times when the test engineer 
might not care about the payload of a frame, 
but still would like to verify the frame header 
information, including the EOF. However, 
not all FC frames have the same size of 
payload. For help in these applications, the 
“#/Type” column of the Source Data 
presentation might use a count value, rather 
than a description, for a frame payload 
expects word. To specify any number of 
occurrences of a data word, one would 
specify the value 0 or the text “Any”. Table 3 
shows how to expect condition an ASM 
frame with any payload, enforcing a 
minimum 4 word payload size to hold the 
ASM header. For example, if the received 
data does not have 0x04 hex value at the 
first byte of HDR 0 word (offset 1), it will 
constitute a failure for the test. 
 
In addition to perform comparison between 
the expected data and the received data, a 
test application may need to store a part of 
received data (i.e. type of frame, service 
parameters) for future use, such as a 
conditional test for branching test execution 
or constructing a response frame. Therefore, 
we introduce the concept of test data 
variables that retain their values until the test 
ends or another received data store 
overwrites it. In Table 4, <R_CTL> is defined 
as a variable that will hold the contents of 
the first byte of HDR 0 word (offset 1). A 
variable’s scope (visibility) is limited to the 
expect data store that defines the variable 

and the execution threads (see Section: 
Expressing Sequences of Test Data) that 
use that particular expect data store.  
 
 
Offset Word  #/Type 

0  Any SOF  SOF  
1  0x04  n/a  HDR 0  
2  0x- 0x----- HDR 1  
3  0x49  0x----- HDR 2  
4  0x- 0x00  0x--- HDR 3  
5  0x--- 0x--- HDR 4  
6  0x----- HDR 5  
7  0x------- 4  
8  0x------- Any  
9  AUTO  CRC  
10  EOFn  EOF  
11  IDLE  2  
*    

 
Table 3 Presentation of Expect Data for 
an ASM Frame 
 
 
Offset  Word  #/Type 

0  Any SOF  SOF  
1  <R_CTL>  0x------ HDR 0  
2  0x-- 0x------ HDR 1  
3  0x-- 0x------ HDR 2  
4  0x-- 0x00  0x---- HDR 3  
5  0x---- 0x---- HDR 4  
6  0x-------- HDR 5  
7  0x-------- 4  
8  0x-------- Any  
9  AUTO  CRC  
10  EOFn  EOF  
11  IDLE  2  

 
Table 4 Variable definition in Expect Data 
 

Received Data Stores 

Received data should be presented in a 
similar fashion as source data.  The 
captured data words in a received data store 
are presented in a grid with 3 columns that 
serve the same purposes as with source 
data. The received data should be able to 
display collections of words as frames, if 
valid frames have been collected.  
 
Received data presentation should contain 
test failure information for those execution 
thread actions that also do data 
comparisons. Mismatches between the 
actual and expected data are indicated with 
failure icons in the row header cell, and 



appropriate coloring changes (text color or 
cell background color) in the “Word” column 
cell (See Table 5). 
 
Expect Data: 
Offset  Word  #/Type  

0  IDLE  6  

 
Received Data: 
Offset  Word  #/Type  

0  IDLE  2  
2  ARB (FF)  1  
3  IDLE  3  

 
Table 5 Presenting test failure 
information 
 

Test Data Generation Control 

Execution threads are sequences of actions 
that control what data a port transmits and 
the timing used to generate that data. Data 
transmissions can be programmed to occur 
once or repeatedly either with no added 
delay or at some fixed rate. Transmit actions 
in an execution thread can happen 
immediately one after the other, or only after 
the occurrence of a suitable trigger event. 
Possible trigger events include things such 
as: 

• Frame header/payload content 
matches 

• Triggers received from an external 
port 

• Various error conditions (i.e. 
incorrect CRC, invalid frame data) 

• A timer expired 
• Complex triggers made from 

combinations of these trigger events 
 
Receive actions are often related to transmit 
actions. For example, in a test we may tell 
the UUT to send us (the test instrument) 
some data. The UUT does this when it 
receives an appropriate command sent by 
our test instrument’s transmitter. Transmitter 
actions do not affect the test instrument’s 
receiver in any way. However, it is natural 
for the user to think of the receiver and 
transmitter operating in tandem, because 
such a logical grouping simplifies TPS 
development. Toward this end, certain 
actions may have associated receive 
actions. These actions are: 

• Transmit Data 

• Event Wait 
 
Each receive instruction includes a timing 
window that determines when to start 
looking for a response (the data collection 
window delay) and how long to wait for it 
(the data collection window duration). There 
are two main types of receive instructions: 
collect data and compare. 
 
Table 6 lists all actions that can take place in 
an Execution Thread. 
 
 

Action  Description  

Tx <data source> 

 
Transmit Data: Send out a set of 
transmission words contained in a 
particular data source. The data 
can contain one or more frames 
or an entire sequence.  

Rx <data store> 
Collect Data: Store the received 
data in the given data store (i.e. 
memory, file).  

?= <expect data 
store> 

Compare Data: Compare the 
received data against the 
expected data.  

EVENT <name of 
trigger event> 

Event Wait: Wait for a particular 
trigger event to occur before 
continuing on to the next 
transmitter action.  

 
PAUSE <time> 

Pause: Wait for a certain period 
of time before continuing on to 
the next transmitter action.   

 
LOOP <loop 
parameters> 

 
Identifies the beginning of a 
repeated set of actions. The user 
can specify the number of times 
to repeat the action set as well as 
the period of each loop iteration. 
 

 
Table 6 List of actions of an Execution 
Thread 
 
Table 7 illustrates an execution thread for a 
given Nx_Port emulated by the test 
instrument. Line 0 indicates the beginning of 
a loop with a set of loop parameters. In this 
case the transmit action (Tx) at Line 1 will be 
executed 5 times with a period of 1 ms. 
Then the execution will halt at Line 2 until 
the test instrument receives the “Trigger A” 
event. After the test instrument receives the 
“Trigger A” event, the execution will resume 
and immediately “Frame A” will be 



transmitted (Line 3). Response from the 
UUT to “Frame A” will be stored in “Resp1” 
data store and will be compared against 
“Exp1” data source. If the test specified in 
“Exp1” fails, the execution thread will be 
marked as Failed. 
 
 
ID  Action  
0  - LOOP 5 times @ 1 ms  
1  Tx “Sequence1”  
2  EVENT “Trigger A”  
3  - Tx “Frame A”  
4   Rx “Resp1”   ?= “Exp1”  
 
Table 7 An example Execution Thread 
 
In addition to Pass/Fail conditions, a user 
may define conditions based on the values 
of the variables set by the received data. 
 

Expressing Test Flow 

In our solution, a test scripting language is 
used to specify the operation of a port during 
a Fibre Channel test. The script consists of 
commands to run execution threads and 
control constructs that determine the order 
in which those execution threads run. This 
section describes the test script capabilities 
in general terms. The most basic instruction 
is one that runs an execution thread. 
Complementing this instruction is a set of 
control constructs including (See Table 8 for 
detailed explanations on these instructions): 

• Simple counted loop mechanism 
• A mechanism to exit a loop 

prematurely 
• If / ElseIf / Else constructs  
• Something to indicate the end of a 

test 
• Various signal generation and 

testing methods to provide software-
based cross-port synchronization 

 
Conditional control constructs test for two 
different types of conditions: thread 
conditions and signal states. A thread 
condition is one that is set as a result of 
executing an execution thread. Execution 
threads have three built-in thread conditions 
and an additional set of user-defined 
conditions as described earlier: Passed, 
Failed, or Executed. 

A simple test that executes one execution 
thread and conditionally selects the next 
execution thread based on the pass/fail 
result of the first might look something like 
this (in pseudo-code): 
 

Run thread “T1” 
If “T1” Passed, 
 Run thread “T2” 
Else 
 Run thread “T3” 

 
Many test instrument hardware do not have 
any built-in test capability, so the task of 
determining the pass/fail status of thread T1 
is up to the PC. The elapsed time between 
T1 finishing and T2/T3 starting is determined 
by the processing power of the PC, the 
amount of data to collect and test, and what 
the loading on the PC is. As a result, test 
scripts are better suited for emulating upper-
level protocols and application-level 
functions, rather than providing real-time 
responses to particular frames. 
 
Signals are a means for cross-port 
synchronization. The state of those signals can 
be tested and test script execution can be 
affected by these signal states. The test scripts 
provide ways to set and clear signals in one 
port, and test them in another port. Below is a 
typical application where activity on one port 
initiates activity on a second port:  
 
On Port “A”: 

Run thread “T1” 
If “T1” Passed, 
 Signal “S1” 
 

On Port “B”: 
 Wait for signal “S1” 
 Run thread “T2” 
 
The synchronization done here is based on 
the pass/fail status of thread “T1”. 
 
Table 8 provides a complete list of Test Flow 
instructions: 
 
 
 
 
 
 



Test Flow 
Instruction 

Description 

RUN threadName;  Runs the execution 
thread with the 
specified name.  

DONE;  Indicates that the port 
is done. The test is 
done when all of the 
ports taking part in 
the test are done.  

REPEAT n { 
<statement-list> }  

Repeats the specified 
list of statements n 
times.  

IF (<cond1>) { 
<statement-list-1> }  
ELSEIF (<cond2A>) { 
<statement-list-2A> } 
ELSEIF (<cond2B>) { 
<statement-list-2B> } 
ELSE { <statementlist-
C> }  

Conditional execution. 
The ELSE and ELSEIF 
clauses are optional. 
It is possible to have 
multiple ELSEIF 
clauses.  

LEAVE IF (<cond>);  Exits an enclosing 
repeat loop if the 
specified condition is 
true. The IF portion is 
optional. If not 
present, the loop is 
exited unconditionally. 

ASSERT signalName;  Asserts the signal with 
the specified name.  

CLEAR signalName;  De-asserts the signal 
with the specified 
name.  

WAITFOR  Pauses execution on  
(<signalCond>);  the port until the 

specified signal 
condition is true.  

Table 8 Test Flow Instructions 
 

CONCLUSIONS 

The following are the benefits of LRU-centric 
Fibre Channel testing demonstrated by our 
framework:  

• The support for military avionics 
protocols (i.e. ASM, 1553, RDMA) 
allows programming at system level 
and enables system-level testing.  

• LRU-level messaging emulates 
LRUs in their final environment. 
Real-time scheduling and stimulus-
response pairing finds bad LRUs, 

not just bad Fibre Channel 
interfaces. 

• Message-level pattern matching and 
error detection simplifies TPS 
programming compared to Fibre 
Channel protocol level testing. 
Providing an abstraction level closer 
to the LRU application will hide the 
details of protocol (physical) level 
programming. 

• LRU-level programming and debug 
tools help the creation of more 
efficient and higher quality tests 
quickly. 
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