
BENEFITS OF LRU-CENTRIC FIBRE CHANNEL TESTING

Yönet A. Eracar, Ph.D.
Teradyne, Inc.

700 Riverpark Drive
N. Reading, Mass. 01864

978-370-1608
yonet.eracar@teradyne.com

Abstract – Fibre Channel is a highly
reliable, gigabit, serial interconnect
technology. Commercial applications of
the Fibre Channel technology allow
concurrent communications among
storage devices using upper level
protocols such as Small Computer
System Interface (SCSI) and Internet
Protocol (IP). Fibre Channel technology
is scalable and flexible due to its support
of various topologies, such as dedicated
point-to-point, arbitrated loops, and
scaled switched networks [1].

Advanced avionics programs and
applications have an increasing need for
bandwidth while maintaining low latency,
determinism, and reliability. Therefore
Fibre Channel is being selected as an
avionics communication solution for a
variety of new military aircraft and
upgrades to existing aircraft [2]. Testing
at all stages (factories and depots) is
necessary to guarantee the reliable and
deterministic communication of avionics.

Fibre Channel avionics networks present
new challenges to those responsible for
maintenance testing at the depots:

• The requirement of testing an
avionics application
communicating via an upper level
protocol, while the test
environment presents a low level,
physical interface.

• Emulating the system
environment of a line replaceable
unit (LRU) to obtain complete
functional test coverage.

• Storing and monitoring large
amounts of data passing through
the Fibre Channel network.

Existing test instruments and emulators
in the market operate at the Fibre
Channel protocol level and they lack
necessary support for LRUs. Testing at
the Fibre Channel protocol level detects
bad receivers, transmitters, media, and
Fibre Channel processors, but fails to
find problems in the inner workings of an
LRU.

In this paper, we will address the testing
challenges listed above with an LRU-
centric approach. We will specify an
LRU-centric Fibre Channel testing
framework and provide implementation
guidelines using example applications.

INTRODUCTION

Fibre Channel Technology

Fibre Channel is an accepted international
standard that is administered by the T11
Technical Committee [9] of the International
Committee for Information Technology
Standards (INCITS). Fibre Channel
technology is widely used by the commercial
industry for Storage Area Network (SAN)
applications. Fibre Channel is also used as
a high speed data bus for avionics systems.
Currently, Fibre Channel operates at data
rates of 1.0625 Gbps, 2.125 Gbps, and 4.25
Gbps. Future data rates are projected to be
8.5 Gbps and 10 Gbps.

Fibre Channel has an architecture that
contains 6 levels to isolate the complexities
associated with each level (See Figure 1 for
a comparison of Fibre Channel levels and
Open Systems Interconnection (OSI) layers)
[10].

Figure 1 Fibre Channel Architectural
Levels compared to OSI Layers

The FC-0 layer [5,6,7] defines the physical
interface characteristics of Fibre Channel
standard, such as data rates, optical and
electrical variants used at each data rate,
connectors, maximum distance capabilities,
and other characteristics such as the
wavelengths for optical and the signal levels
for the electrical media.

The FC-1 layer defines the transmission
protocol for Fibre Channel communication.
The transmission protocol includes the serial
encoding (8b/10b encoding is used),
decoding, error control, and link control. The
clock information is embedded in the serial
data stream.

The FC-2 layer defines the signaling and
framing protocol of Fibre Channel. The
protocol involves the framing structure, the
flow of control, and upper level protocol-
independent class of services.

The FC-3 layer is reserved, but not fully
specified, to provide common, protocol-

independent services to support multiple
protocols over multiple ports.

The FC-4 layer defines the mapping of the
application to the network control structures.
An application for Fibre Channel may be an
upper-level protocol (ULP), such as Small
Computer System Interface (SCSI),
Anonymous Subscriber Messaging (ASM),
Internet Protocol (IP), MIL-STD-1553, IPI, or
High Performance Parallel Interface (HIPPI).

A Fibre Channel network consists of two or
more devices connected by an
interconnection scheme called a topology
[8]. Sources and destinations of information
in Fibre Channel network are called nodes.
Each node has one or more node ports
(N_Port, NL_Port, or generically just
Nx_Port). A node port is a hardware function
that allows the node to transmit and receive
information using the Fibre Channel
interface. Figure 2 illustrates a node, its
ports, and communication links.

Figure 2 Terminology used in Fibre
Channel Nodes

The Fibre Channel standard supports three
topologies:
• Point-to-point topology: There are
exactly two N_Ports connected together. No
switch (routing function) is present.
• Arbitrated loop topology: There are
a practical minimum of two and a maximum
of 126 NL_Ports connected in a loop. Switch
(routing function) is distributed into each
NL_Port.
• Switched fabric topology: Up to 14
million ports can be connected together.
Switch (routing function) is centralized via a
generic environment.

The smallest information unit for Fibre
Channel communication between two nodes

is called a frame. A frame is made up of
transmission words, which contain 4 bytes
each. A frame contains a start-of-frame
delimiter (4 bytes), a header of 6
transmission words, an optional payload up
to 528 transmission words, a 4-byte long
Cyclic Redundancy Check (CRC), and an
end-of-frame delimiter (See Figure 3).
Frame header contains information for
identification (destination and source
address), placement within a related
collection of frames, flow of control, and
basic service parameters. The payload is
optional. The payload, when exists, can
contain raw data, as well as, frames for an
upper-level protocol.

Figure 3 Frame Structure

One or more frames make a sequence. A
sequence is a unidirectional transfer of a set
of frames that move between the same
source and destination nodes. One or more
sequences make an exchange. An
exchange is bidirectional (See Figure 4). A
port can execute multiple exchanges
simultaneously.

Certain processes are used to manage an
exchange between nodes. Exchange
management involves login procedures (i.e.
Fabric Login, Point-to-Point N_Port Login) to
establish communication session between
two nodes, maintain and control the
communication until the intended one or

more exchanges are complete, and finally
end the session with a logout procedure.

Figure 4 Exchange, sequences, and
frames

The Fibre Channel standard defines multiple
delivery options referred to as Classes of
Service to support the needs of a wide
variety of applications and data types. Fibre
Channel implements Quality of Service
(QoS) features, such as guaranteed
bandwidth, guaranteed latency,
acknowledged delivery, notification of non-
delivery, end-to-end flow control, and
guaranteed in-order delivery of frames within
a sequence, using different classes of
service. Generally, there are five user
classes of services defined in Fibre
Channel. However, only two of them, Class2
and Class-3, are widely deployed in the
industry. Class-3 is the dominant class of
service in the commercial and mil-aero
markets. It is a best-effort, packet-switched
class of service that resembles a datagram
service with no significant QoS features [2].

Fibre Channel Usage and Test
Requirements in Military/Avionics
Applications

Advanced avionics technologies generate
data in the form of voice and video data at
higher rates than the current communication
bus architectures (i.e. MIL-STD-1553). As
an answer to this limitation, Fibre Channel

has replaced the aging MIL-STD-1553
standard as the main control and data bus
for military avionics. However, Fibre
Channel is not the only high speed
communication bus technology used by the
avionics. A typical avionics Line
Replaceable Unit (LRU) uses more than one
data and/or control bus interfaces
simultaneously (See Figure 5). While a Fibre
Channel is used as the primary data and
control bus, secondary data buses (i.e.
source synchronous and/or slow parallel –
Peripheral Component Interconnect (PCI),
Virtual Machine Environment (VME)) are
used as wide data pipes for short distances.
For example, an LRU may receive a
command from the Fibre Channel port and
start transmitting data through its source-
synchronous data port as a response.

Figure 5 An LRU with multiple ports
supporting different interfaces

Within the T11 Fibre Channel Standards
group, a technical committee is responsible
with the definition of upper-level protocols
for military/avionics applications. To this
date, three upper-level protocols are
published; a mapping of MIL-STD-1553 over
Fibre channel, ASM, and Remote Direct
Memory Access (RDMA), which is a SCSI
light protocol.

One advantage of using MIL-STD-1553 over
Fibre Channel is that a user, who is familiar
with the legacy MIL-STD-1553 standard, can
operate using MIL-STD-1553 commands
without being concerned with the transport
layer. Figure 6 illustrates, the mapping of a

typical MIL-STD-1553 operation to Fibre
Channel, sending 1553 Bus Controller (BC)
to - Remote Terminal (RT) Transfer
Command.

Figure 6 1553 BC-to-RT operation over
Fibre Channel

ASM protocol used in military is illustrated in
Figure 7. ASM is a basic Producer-
Consumer paradigm. The avionics
applications are designed to generate and
consume data at periodic rates. Therefore,
once the Producers and Consumers are
synchronized in the same time domain, they
do not need an external controller to
maintain the communication.

Figure 7 Example ASM exchange

Recent studies [2, 3, 4] listed the following
minimum intermediate-level (the LRU is

tested until a fault is identified to the LRU
subsystem System Replaceable Unit)
capabilities for a Fibre Channel test system:
1. Adherence to FC-0, FC-1, and FC-2

standards for lower-level protocols and
FC-4 standard for upper-level protocols.

2. Capability of optical transmitter and
receiver to operate within specified
ranges.

3. Capability to accommodate multiple
channels of connectivity for copper and
fiber links concurrently.

4. Capability to generate “bad” traffic by
programmatically injecting errors (i.e.
Cyclic Redundancy Check – CRC error
injection).

5. Capability to differentiate “bad” traffic
from “good” traffic.

6. Capability to generate and read traffic
concurrently.

7. Capability to generate traffic in response
to a trigger condition.

8. Capability to generate traffic from a file
in binary format (streaming).

9. Capability to send and receive a
sequence of frames programmatically
multiple times with a certain period.

One major Fibre Channel testing
requirement common to all levels of
maintenance is the support for upper level
protocols over Fibre Channel. A desired test
system (instrument and development
environment) should allow the test engineer
to program and test at an abstraction level
that matches the upper level protocol, not
the underlying low-level Fibre Channel
protocol.

Current Fibre Channel Solutions

Currently, many Fibre Channel test solutions
are targeting Storage Area Networks (SAN).
They are either Fibre Channel device
emulators (distance, delay, frame dropping,
buffer-to-buffer credit estimation, frame
configuration, and traffic generation) or
parametric test instruments (i.e. bit error
test, fabric login testing, signal loss).

A traditional Fibre Channel test environment
includes active test tools that generate traffic
conditions needed to test all of the fabric
and equipment capabilities, together with
passive protocol analyzers to transparently

monitor traffic information within the
network. Significant challenges are related
to the integration of heterogeneous test tools
and various application programming
interfaces (API) in a common test
environment.

However, these are not true automated test
equipment (ATE) solutions. Traffic
generation and monitoring is supported, but
the testing is left as an exercise for the user.
They do not have built-in support for upper-
level protocols, i.e. nothing over FC-2 level.
Creation of sequences and management of
exchanges are handled in the users’ test
programs.

LRU-Centric Fibre Channel
Testing

In [3], the authors point out two areas of
interest in testing the Fibre Channel network
implementation in the Joint Strike Fighter
(JSF) program: a) the parametric testing of
the laser transceivers, and b) the analysis of
the JSF ASM protocol implementation.
Although these are specifically listed as the
testing requirements for the JSF program,
we believe they reflect the common
concerns about various military/avionics
Fibre Channel implementations.

Our goal is to address the test requirements
listed above with a LRU-centric solution that
provides:

• Built-in test functionality for upper-
level protocols as well as the Fibre
Channel protocol.

• Test development environment (i.e.
tools, software drivers) that supports
FC-4 level and upper-level protocols
in addition to FC-2 level.

• Software and hardware features (i.e.
triggering, protocol encoding and
decoding, deterministic and
accurate scheduling of
transmissions) to emulate the
system environment of the LRU.

The following sections give a detailed list of
features, with some examples, that are part
of our solution. The features covered in
these sections are:

• Creation of test data
• Controlling test data generation

• Expressing test flow
• Emulating the system environment

Our solution is a set of design guidelines for
a test development and execution
environment and indirectly the test
instrument that will support this software
abstraction. It should be noted that the
features explained below are generic
enough to support other high speed serial
bus protocols with minimum changes.

Creation of Test Data

Static Test Data Sources

Test (Source) data, in its most generic form,
is a collection of arbitrary transmission
words. These transmission words are
organized into structures called static data
sources. There are two types of static data
sources: transmit and expect.

Transmit data sources hold a sequence of
transmission words that a port is to
broadcast. The sequence is arbitrary,
although most test applications use
structured data in the form of properly
formatted frames and sequences. The
generic nature of data sources provides
support for higher level abstractions like
frames and sequences, yet still offers
arbitrary error injection capabilities for those
test applications that require it.

The transmission word set in a transmit data
source can be presented in a grid with 3
columns (See Table 1):

• The first column contains the 0-
based offset of the transmission
word in the set.

• The second column contains a
depiction of the transmission word.

• The third column contains either a
count that indicates the total number
of consecutive instances of that
transmission word or a description
of the use of that transmission word
in a frame.

Offset Word #/Type
0 IDLE 4
4 SOFf SOF
5 0x06 0x000011 HDR 0
6 0x00 0x000022 HDR 1
7 0x48 0x290000 HDR 2
8 0x46 0x00 0x0000 HDR 3
9 0x03B1 0xFFFF HDR 4
10 0x00000000 HDR 5
11 0x00000011 DATA 0
12 0x22222222 DATA 1
13 AUTO CRC
14 EOFn EOF
15 IDLE 6
*

Table 1 Presentation of Transmit Data

However, this form of creating test data is
still a lower level of abstraction than desired,
if the goal is only streaming data from node
A to node B with no error injection. In this
case, the specification of test data should be
as simple as:

TRANSMIT SEQUENCE (

SourceNode: A,
DestNode: B,
SourceData:<file_spec>,
<class of service>,
<Other service parameters:

Max payload size,
frame control, sequence
control, …>

);

The underlying implementation should
handle breaking up the binary test data file
into frames and sequences.

Expect data sources hold a specification of
what sequence of transmission words is
expected at the port’s receiver. Expect data
has two components: the data to expect and
a mask to indicate which bits of that data are
relevant in determining a pass/fail result.
Expect data should be presented in a similar
fashion as transmit data. The principal
difference lies in the display of the data in
indicating relevant and masked (non-
relevant) data. If the cell contains all relevant
data (it’s not masked), then it is rendered as
it would be for transmit data. Masked data is
displayed according to the following rules:

• Data is always in hex.

• Hex digits that are completely
masked are displayed as “-”.

• Hex digital that are partially masked
are displayed as “?”.

Table 2 shows examples of combining logic
state and mask data to produce expect data:

Logic State

Data
Mask

Displayed
Expect Data

0x12345678 0xFFFFC000 0x----?678

0x12345678 0xFFFFFFFF 0x--------

0x12345678 0x00000000 0x12345678

0x12345678 0xF0F0F0F0 0x-2-4-6-8

Table 2 Presentation of Expect Data

There are times when the test engineer
might not care about the payload of a frame,
but still would like to verify the frame header
information, including the EOF. However,
not all FC frames have the same size of
payload. For help in these applications, the
“#/Type” column of the Source Data
presentation might use a count value, rather
than a description, for a frame payload
expects word. To specify any number of
occurrences of a data word, one would
specify the value 0 or the text “Any”. Table 3
shows how to expect condition an ASM
frame with any payload, enforcing a
minimum 4 word payload size to hold the
ASM header. For example, if the received
data does not have 0x04 hex value at the
first byte of HDR 0 word (offset 1), it will
constitute a failure for the test.

In addition to perform comparison between
the expected data and the received data, a
test application may need to store a part of
received data (i.e. type of frame, service
parameters) for future use, such as a
conditional test for branching test execution
or constructing a response frame. Therefore,
we introduce the concept of test data
variables that retain their values until the test
ends or another received data store
overwrites it. In Table 4, <R_CTL> is defined
as a variable that will hold the contents of
the first byte of HDR 0 word (offset 1). A
variable’s scope (visibility) is limited to the
expect data store that defines the variable

and the execution threads (see Section:
Expressing Sequences of Test Data) that
use that particular expect data store.

Offset Word #/Type

0 Any SOF SOF
1 0x04 n/a HDR 0
2 0x- 0x----- HDR 1
3 0x49 0x----- HDR 2
4 0x- 0x00 0x--- HDR 3
5 0x--- 0x--- HDR 4
6 0x----- HDR 5
7 0x------- 4
8 0x------- Any
9 AUTO CRC
10 EOFn EOF
11 IDLE 2
*

Table 3 Presentation of Expect Data for
an ASM Frame

Offset Word #/Type

0 Any SOF SOF
1 <R_CTL> 0x------ HDR 0
2 0x-- 0x------ HDR 1
3 0x-- 0x------ HDR 2
4 0x-- 0x00 0x---- HDR 3
5 0x---- 0x---- HDR 4
6 0x-------- HDR 5
7 0x-------- 4
8 0x-------- Any
9 AUTO CRC
10 EOFn EOF
11 IDLE 2

Table 4 Variable definition in Expect Data

Received Data Stores

Received data should be presented in a
similar fashion as source data. The
captured data words in a received data store
are presented in a grid with 3 columns that
serve the same purposes as with source
data. The received data should be able to
display collections of words as frames, if
valid frames have been collected.

Received data presentation should contain
test failure information for those execution
thread actions that also do data
comparisons. Mismatches between the
actual and expected data are indicated with
failure icons in the row header cell, and

appropriate coloring changes (text color or
cell background color) in the “Word” column
cell (See Table 5).

Expect Data:
Offset Word #/Type

0 IDLE 6

Received Data:
Offset Word #/Type

0 IDLE 2
2 ARB (FF) 1
3 IDLE 3

Table 5 Presenting test failure
information

Test Data Generation Control

Execution threads are sequences of actions
that control what data a port transmits and
the timing used to generate that data. Data
transmissions can be programmed to occur
once or repeatedly either with no added
delay or at some fixed rate. Transmit actions
in an execution thread can happen
immediately one after the other, or only after
the occurrence of a suitable trigger event.
Possible trigger events include things such
as:

• Frame header/payload content
matches

• Triggers received from an external
port

• Various error conditions (i.e.
incorrect CRC, invalid frame data)

• A timer expired
• Complex triggers made from

combinations of these trigger events

Receive actions are often related to transmit
actions. For example, in a test we may tell
the UUT to send us (the test instrument)
some data. The UUT does this when it
receives an appropriate command sent by
our test instrument’s transmitter. Transmitter
actions do not affect the test instrument’s
receiver in any way. However, it is natural
for the user to think of the receiver and
transmitter operating in tandem, because
such a logical grouping simplifies TPS
development. Toward this end, certain
actions may have associated receive
actions. These actions are:

• Transmit Data

• Event Wait

Each receive instruction includes a timing
window that determines when to start
looking for a response (the data collection
window delay) and how long to wait for it
(the data collection window duration). There
are two main types of receive instructions:
collect data and compare.

Table 6 lists all actions that can take place in
an Execution Thread.

Action Description

Tx <data source>

Transmit Data: Send out a set of
transmission words contained in a
particular data source. The data
can contain one or more frames
or an entire sequence.

Rx <data store>
Collect Data: Store the received
data in the given data store (i.e.
memory, file).

?= <expect data
store>

Compare Data: Compare the
received data against the
expected data.

EVENT <name of
trigger event>

Event Wait: Wait for a particular
trigger event to occur before
continuing on to the next
transmitter action.

PAUSE <time>

Pause: Wait for a certain period
of time before continuing on to
the next transmitter action.

LOOP <loop
parameters>

Identifies the beginning of a
repeated set of actions. The user
can specify the number of times
to repeat the action set as well as
the period of each loop iteration.

Table 6 List of actions of an Execution
Thread

Table 7 illustrates an execution thread for a
given Nx_Port emulated by the test
instrument. Line 0 indicates the beginning of
a loop with a set of loop parameters. In this
case the transmit action (Tx) at Line 1 will be
executed 5 times with a period of 1 ms.
Then the execution will halt at Line 2 until
the test instrument receives the “Trigger A”
event. After the test instrument receives the
“Trigger A” event, the execution will resume
and immediately “Frame A” will be

transmitted (Line 3). Response from the
UUT to “Frame A” will be stored in “Resp1”
data store and will be compared against
“Exp1” data source. If the test specified in
“Exp1” fails, the execution thread will be
marked as Failed.

ID Action
0 - LOOP 5 times @ 1 ms
1 Tx “Sequence1”
2 EVENT “Trigger A”
3 - Tx “Frame A”
4 Rx “Resp1” ?= “Exp1”

Table 7 An example Execution Thread

In addition to Pass/Fail conditions, a user
may define conditions based on the values
of the variables set by the received data.

Expressing Test Flow

In our solution, a test scripting language is
used to specify the operation of a port during
a Fibre Channel test. The script consists of
commands to run execution threads and
control constructs that determine the order
in which those execution threads run. This
section describes the test script capabilities
in general terms. The most basic instruction
is one that runs an execution thread.
Complementing this instruction is a set of
control constructs including (See Table 8 for
detailed explanations on these instructions):

• Simple counted loop mechanism
• A mechanism to exit a loop

prematurely
• If / ElseIf / Else constructs
• Something to indicate the end of a

test
• Various signal generation and

testing methods to provide software-
based cross-port synchronization

Conditional control constructs test for two
different types of conditions: thread
conditions and signal states. A thread
condition is one that is set as a result of
executing an execution thread. Execution
threads have three built-in thread conditions
and an additional set of user-defined
conditions as described earlier: Passed,
Failed, or Executed.

A simple test that executes one execution
thread and conditionally selects the next
execution thread based on the pass/fail
result of the first might look something like
this (in pseudo-code):

Run thread “T1”
If “T1” Passed,
 Run thread “T2”
Else
 Run thread “T3”

Many test instrument hardware do not have
any built-in test capability, so the task of
determining the pass/fail status of thread T1
is up to the PC. The elapsed time between
T1 finishing and T2/T3 starting is determined
by the processing power of the PC, the
amount of data to collect and test, and what
the loading on the PC is. As a result, test
scripts are better suited for emulating upper-
level protocols and application-level
functions, rather than providing real-time
responses to particular frames.

Signals are a means for cross-port
synchronization. The state of those signals can
be tested and test script execution can be
affected by these signal states. The test scripts
provide ways to set and clear signals in one
port, and test them in another port. Below is a
typical application where activity on one port
initiates activity on a second port:

On Port “A”:

Run thread “T1”
If “T1” Passed,
 Signal “S1”

On Port “B”:
 Wait for signal “S1”
 Run thread “T2”

The synchronization done here is based on
the pass/fail status of thread “T1”.

Table 8 provides a complete list of Test Flow
instructions:

Test Flow
Instruction

Description

RUN threadName; Runs the execution
thread with the
specified name.

DONE; Indicates that the port
is done. The test is
done when all of the
ports taking part in
the test are done.

REPEAT n {
<statement-list> }

Repeats the specified
list of statements n
times.

IF (<cond1>) {
<statement-list-1> }
ELSEIF (<cond2A>) {
<statement-list-2A> }
ELSEIF (<cond2B>) {
<statement-list-2B> }
ELSE { <statementlist-
C> }

Conditional execution.
The ELSE and ELSEIF
clauses are optional.
It is possible to have
multiple ELSEIF
clauses.

LEAVE IF (<cond>); Exits an enclosing
repeat loop if the
specified condition is
true. The IF portion is
optional. If not
present, the loop is
exited unconditionally.

ASSERT signalName; Asserts the signal with
the specified name.

CLEAR signalName; De-asserts the signal
with the specified
name.

WAITFOR Pauses execution on
(<signalCond>); the port until the

specified signal
condition is true.

Table 8 Test Flow Instructions

CONCLUSIONS

The following are the benefits of LRU-centric
Fibre Channel testing demonstrated by our
framework:

• The support for military avionics
protocols (i.e. ASM, 1553, RDMA)
allows programming at system level
and enables system-level testing.

• LRU-level messaging emulates
LRUs in their final environment.
Real-time scheduling and stimulus-
response pairing finds bad LRUs,

not just bad Fibre Channel
interfaces.

• Message-level pattern matching and
error detection simplifies TPS
programming compared to Fibre
Channel protocol level testing.
Providing an abstraction level closer
to the LRU application will hide the
details of protocol (physical) level
programming.

• LRU-level programming and debug
tools help the creation of more
efficient and higher quality tests
quickly.

ACKNOWLEDGEMENTS

I would like to acknowledge Mike
McGoldrick, Dongxian Li, and Bill O’Neill for
their contributions.

REFERENCES

[1] FCIA (Fibre Channel Industry Association)
http://www.fibrechannel.org/
[2] Warden, G. and Fleissner, B., “Fibre Channel
Testing for Avionics Applications”, IEEE
AUTOTESTCON’2004, San Antonio, TX, USA.
[3] McKinzie, F.C., “Achieving Greater
Automation in Fibre Channel Test Equipment for
Parametric and ASM Protocol Analysis and
Testing”, AUTOTESTCON 2003
[4] Barker, C.R., “Intermediate Level
Maintenance Fibre Channel Testing”,
AUTOTESTCON 2002
[5] ANSI, 1994, FC-PH, “Fibre Channel Physical
and Signaling Interface”, ANSI X3.230:1994
[6] ANSI, 1997, FC-PH-2, “Fibre Channel 2

nd

Generation Physical Interface”, ANSI
X3.297:1997
[7] ANSI, 1998, FC-PH-3, “Fibre
ChannelGeneration Physical Interface”, ANSI
X3.303:1998
[8] Kembel, R.W., “Fibre Channel: A
Comprehensive Introduction”, 2003, Northwest
Learning Associates.
[9] T11 web site., Address: http://www.t11.org
[10] Precision Fibre Channel, “Fibre Channel
Class”, Training Manual, 2006.

